Competition Boost-Gliders

Trip Barber NAR 4322

What it Takes to Win

- Reliability
- Good Boost
- Clean Transition to Glide
- Good Glide
- Returned Model

Glider Reliability

- Proper structural strength for boost
 - Balsa thickness & grain, gluing technique
 - Lower-thrust motors preferred
 - Tissue covering for B and higher power classes
- Good release from launcher
 - Restrain ignition clips from catching the tail,
 provide wind bracing so glider stays on pod
- Clean pod separation
 - Proper friction fit, small chute for recovery
- Practice makes perfect!

Good Boost

- Provide enough launch rod travel length
 - Use "power tower", extended rod lengths and larger diameters if necessary
- Get the force balance and stability right
 - Thrust vs aerodynamic balance, CG vs CP
- Align wings correctly on pad
 - Wing span parallel to wind direction
- Use a smaller glider unless it's windy
 - High altitude = long duration

Clean Transition

- Put some (~2%) incidence on stabilizer
 - Pulls out of "death dives"
 - Too much incidence will cause boost loops & glide balance issues
- Trim for wide-diameter right turn
 - Start with horizontal toss at normal glide speed
 - Check with hand launches nearly straight up
- Choose proper motor delay time
 - Eject pod on the way up, not down

Good Glide

- Minimize glider drag and weight
 - Smooth wing surface, without paint
- Select and shape an appropriate airfoil
 - High point at 30% chord, taper wing thickness
- Minimize wing loading (weight / wing area)
- Trim to glide at a small angle of attack
 - Maximize $C_L^{1.5}/C_D$ for max duration
- Get the CG vs neutral point balance right
 - Glide CG at ¾-chord point is ideal

FIGURE 13-18 Stine's Basic B/G Design Rules.

Glider Sizes

Engine Power	Wing Area (Sq. inches)	Wing & Boom Thickness	Stab/Rudder Thickness
1/2 A	15 – 25	3/32	1/32
A	20 – 35	1/8	1/16
В	30 – 45	1/8 – 3/16	1/16
C	40 – 60	3/16	3/32

Wings & stabilizers from 6 lb/ft³ density C-grain balsa Fuselage booms from 12-16 lb density

Glider Airfoil

Picking Air

- Good durations require flying in air that is warmer than the surrounding air and is rising a "thermal"
- Most likely to occur on sunny afternoons, downwind of areas (plowed dirt, asphalt) that absorb sun heat
- Generally occur in "waves" a bubble of warmth for a minute or two followed by cool downdraft for a longer period – on a regular cycle
- Detected by thermal streamers, sudden calm and warming, recording thermometers, or circling birds
- Aim slightly downwind to boost into the thermal

Returning Models

- Enhance glider visibility
 - Dark magic marker on underside of wings,
 aluminized mylar on tops of wingtips
 - Use larger gliders in windy weather
- Use radio control
- Use a dethermalizer
 - Wing flap, "beer can"or drop weight

