S4A – Boost Glider Duration

vNARCON 2022

Chris Flanigan
NAR 17540

Agenda

- Overview, history, and current rules
- Design considerations
 - Boost, glide, recovery
- Details of a slide wing model
- Details of a scissors/flop model
- Models from other countries
- Ancillary issues
- Q&A

OVERVIEW, HISTORY, AND CURRENT RULES

Current S4 Is Equivalent to NAR R/G

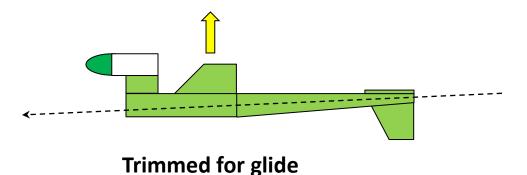
- S4 is "boost glider duration competition"
 - Space model competition, class 4
- Originally, S4 was similar to NAR B/G event
 - Pop pods, etc.
- Awkward innovation was internally-carried tiny gliders
 - Glider ejected at apogee
 - Very difficult to see for timing, even with binoculars
 - Very difficult to tell if the tiny glider was actually gliding or just drifting/tumbling with the wind
- S4 rules changed to eliminate ejectable items
 - Everything that goes up, has to come back gliding
 - Equivalent to NAR R/G event

(continued)

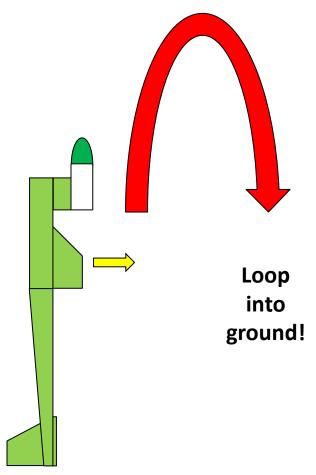
S4 Semi-Recent Rule Changes

- S4 had a minimum mass requirement, but now eliminated
 - Leftover from trying to address the tiny glider issue
- There is still a maximum mass rule (60 gr for S4A)
 - Why?
 - Never measured at model check-in
- S4 models may use radio control for dethermalizer
 - Similar to rules for Free Flight models
 - Model must be free flight only during standard portion of glide
 - RC safer than slow-burn fuses
 - Minimal danger from RC nichrome wire release
 - Mass of RC is a challenge (receiver, battery)

S4 Motor Impulse Classes


- S4 has range of motor impulse events ...
 - A, B, C, D, E, F
- ... but S4A is the only event typically flown
 - Flown at continental and world championships
 - FAI medal for best annual performance in S4A
 - But not S4B, or S4C, etc.
 - Big motivation to fly S4A, little motivation for other impulses
- Current trend is to limit impulse to 1/2A
 - S4A covers 0-2.5 N-s
 - S4A requires large field, large recovery teams, lots of lost models
 - 1/2A helps address these issues
 - Still very competitive and maybe even more challenging!

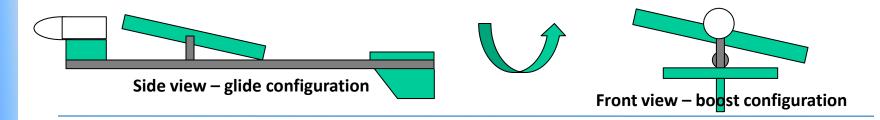
S4 Rules Summary


- Must ascend vertically (within 60° cone)
 - Cannot use lifting surfaces during ascent (e.g., Jetex models)
- Must descend gliding, nothing ejected/separated
 - Must enter "stable glide" within 30 seconds, or DQ
- Three standard rounds
 - 180 second max per round
 - Two models allowed for three flights
- If tie after three rounds, one flyoff round with 300 sec max
 - One additional model allowed
- If still tied, final flyoff round with unlimited time
- Models do not need to be recovered/returned, but...
 - 2 models for 3 standard rounds
 - 1 more model for up to 2 flyoff rounds

DESIGN CONSIDERATIONS

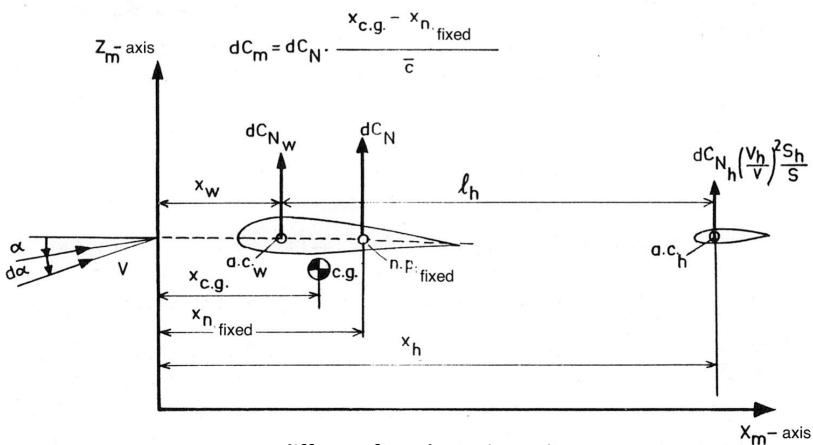
Fixed Geometry Glider Will Not Work* for S4

- Must have change(s) between boost and glide
 - Geometry
 - Control surface settings
 - Mass
 - Combination


Wide Variety of S4 Design Options

- Pop-up elevator
- Pop-down canard
- Slide pod, motor shift
- Swing wing
- Adjustable wing flaps
 - "Hummingbird" (Parks) derivatives
- Slide wing (partial travel, full travel)
- Flop wing
- Scissors wing
- Combinations
 - Slide/flop wing, slide wing w/pop-up elevator, slide wing w/curved fuselage
 - Scissors/flop

Dominates S4A!


Must Have Positive Transition to Glide

- Must have correct pitch stability (see next slide)
 - Glider must pull out of a dive, from any orientation
- Typically achieved by incidence between the wing and horizontal stabilizer
 - Horizontal stabilizer or elevator at negative incidence
 - Wing at positive incidence
- For a scissors wing, wing positive incidence for glide "rotates" in boost configuration
 - Easy to make scissors (or scissors/flop) models boost straight

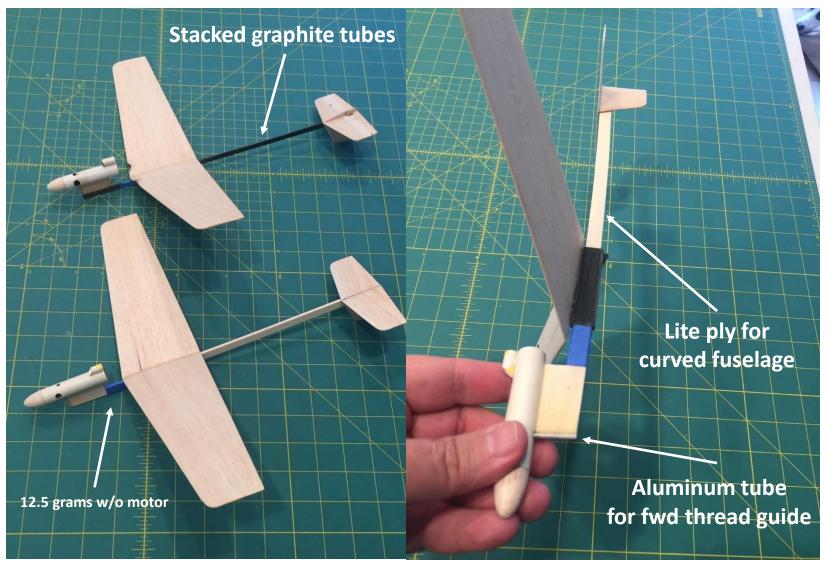
Calculation of Longitudinal Stability

(horizontal glide orientation)

Note: different for other orientations

Incidence Effects Must Be Minimized for Boost

- Wing/tail incidence causes boost problems
 - Tendency to loop, even loop-into-ground
- Solutions to suppress incidence effects during boost
 - Slide wing
 - Aft wing location significantly reduces pitch moment arm
 - Pop-up elevator or adjustable wing flaps
 - Hold down during boost, release for glide
 - Scissors rotation
 - Wing incidence "rotates" out of pitch plane
- Note: need large incidence to assure transition
 - ~2-3 degrees for slide wing model
 - ~3-5 degrees for scissors/flop model


Recovery Is Very Important for Multi-Round

- 2 models to make 3 flights
 - Must get at least one model back to make three flights
- Add bright colors or markings to the model
 - Something to stand out in a field of grass (or sand, or...)
- Sharpies and similar
- Silver mylar tape
- Gold trim Monokote
- Both upper & lower surfaces
- Negligible mass added
- Dethermalizers
 - Discussed later



DETAILS OF A SLIDE WING MODEL

Two Slide Wing Models

Slide Wing with Pop-Up Elevator

Slide Wing Design Features

Wing

- Typically 1/8" balsa (5-6 PCF), maybe 3/32"
- Wing span or aspect ratio can't be too large, or wing will shred
 - Wingspan ~ 12"
- Some aft sweep will help with flutter and divergence
- Using 1/2A motors may allow higher aspect ratio

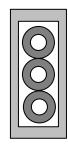
Horizontal and vertical stabilizers

Typically 1/16" balsa (6-8 PCF)

Covering?

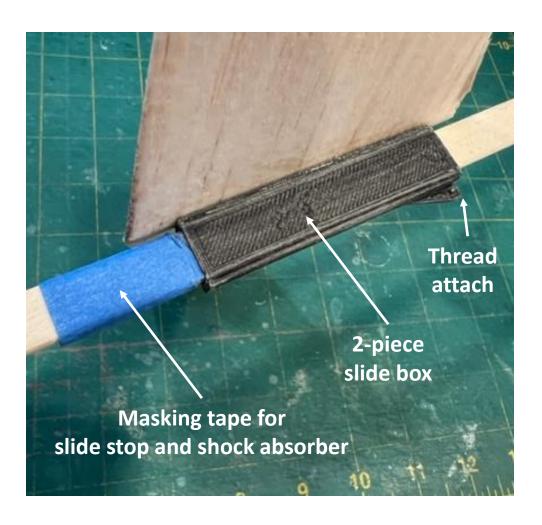
- Japanese tissue adds strength, but also adds mass
 - Good tissue getting harder to find
- Dope or other paints add waterproofing, but also mass
- Fly naked!

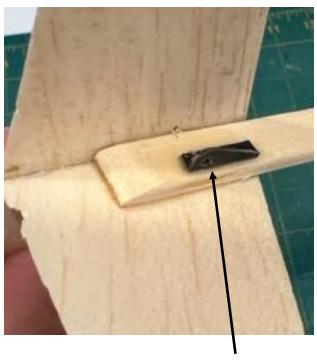
Slide Wing Design Features


Fuselage

- Stacked graphite tubes (0.078")
 - 2, 3, or 4 tubes
 - More tubes add "roll" precision for wing position, but also mass
- 2 tubes

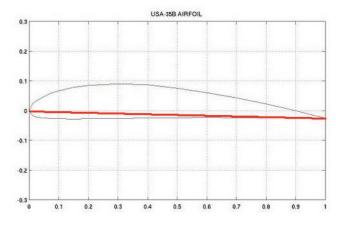
- Lite ply or spruce for curved fuselages
 - Eliminates the need for pop-up elevator
- 1/8" balsa with 1/64" plywood "T" slide


Wing slide box


- 3D-printed
- Laser cut (Apogee Cirrus Breeze kit)
- Traditional hand made (yes, it can be done!)
 - 1/64" plywood
 - Wrap with fiberglass or thread for strength

3 tubes

3D-Printed Parts for Slide Box and Thread(s)



Thread guide

Glide Transition of Slide Wing Models

- Natural incidence from the wing airfoil
 - 1-2°, depending on airfoil's zero lift line
 - Might work, depending on orientation of glider when wing slides forward...
 - ... but significant probability that it won't transition to glide (i.e., death dive)

- For multiround event, reliability is critical
 - 100% glide transition is needed
- Methods for additional incidence
 - Pop-up elevator
 - Held down by string during boost, released at ejection
 - Curved fuselage
 - Wing at 0° incidence during boost, positive incidence for glide
 - 3° seems to give very reliable transition

SCISSORS/FLOP MODEL DETAILS

Model That Won the S4A Gold Medal (2021)

Scissors/Flop Design Features

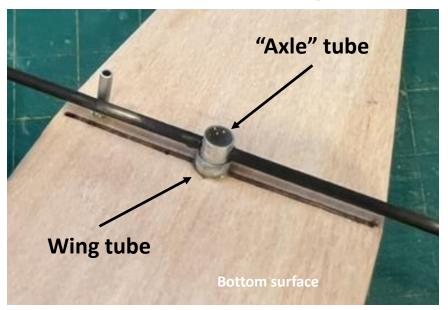
Wing

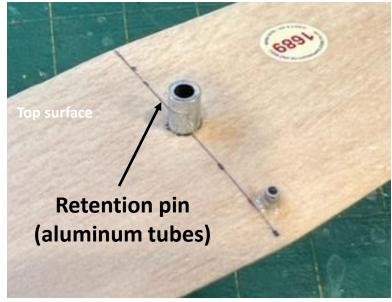
- Wing span or aspect ratio can be larger than slide wing
 - Wingspan ~ 18"
- Typically 1/8" balsa (4-6 PCF), maybe 3/32"
- Wing planform typically straight with tapered tips
 - Straight-taper is easier to airfoil
- Horizontal and vertical stabilizers
 - Typically 1/16" balsa (6-8 PCF)

Covering?

- Japanese tissue adds strength, but also adds mass
 - Good tissue getting harder to find
- Dope or other paints add waterproofing, but also mass
- Fly naked!

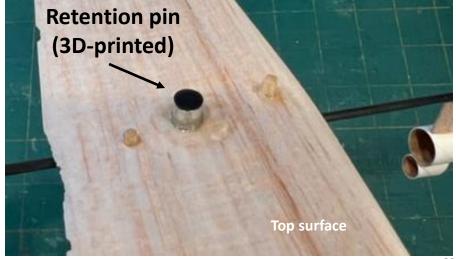
Scissors/Flop Design Features


Fuselage


- Graphite tube, typically 0.098" diameter
 - 0.120" tube provides additional stiffness & strength with only small additional mass
 - Smaller tubes are too flexible

Wing pivot

- Metal screw and nut
 - Drill hole through graphite tube (difficult)
 - Cut tube, then splice tube with reinforcements
- Aluminum tubes, nested
 - Central "axle" tube with hole for fuselage (7/32")
 - Larger tube glued into wing (1/4")
 - Nylon screw, 3D-printed pin, or aluminum tube to secure
- Use assembly jigs for accurate assembly

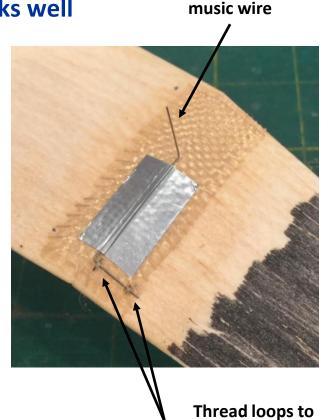

Wing Pivot Features

<u>I</u> увеличено

Russian example of screw/nut

Flop Wing Hinges and Deployment

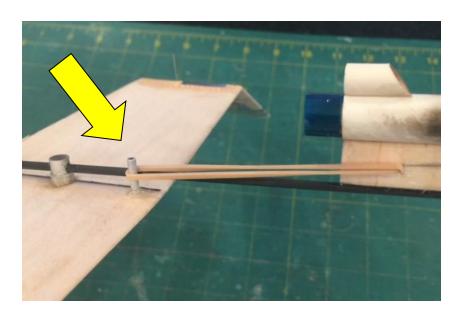
Hinges

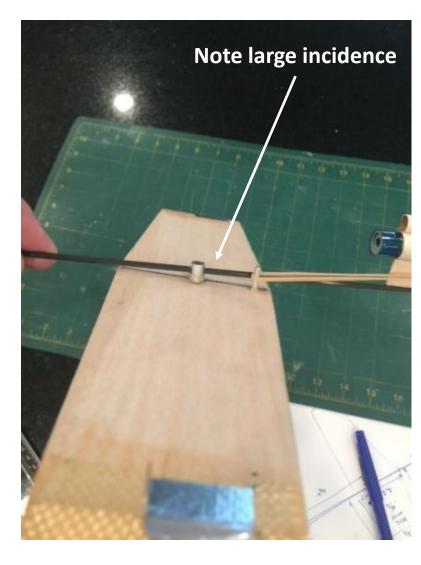

1 oz Kevlar fabric* bonded to wing works well

Titebond works well

- Tyvek tape
 - Aggressive adhesive
 - Will creep over time

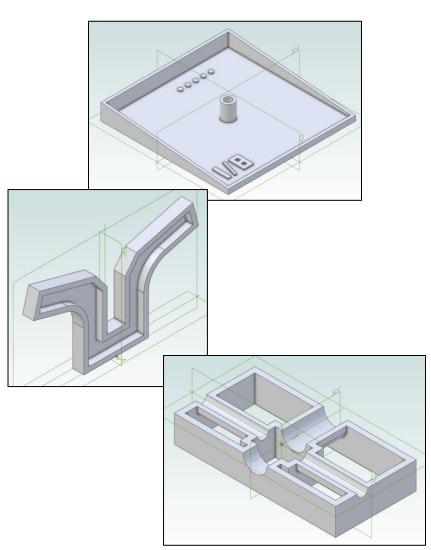
Flop wing deployment


- Rubber bands aren't sufficient for 100% reliable deployment
- Torque bars can work (Don Carson)
- "Belt and suspenders" (Trip Barber)
 - Torque bars for initial ~90°
 - Rubber bands for remainder of deployment


0.015" or 0.0135"

hold torque bar

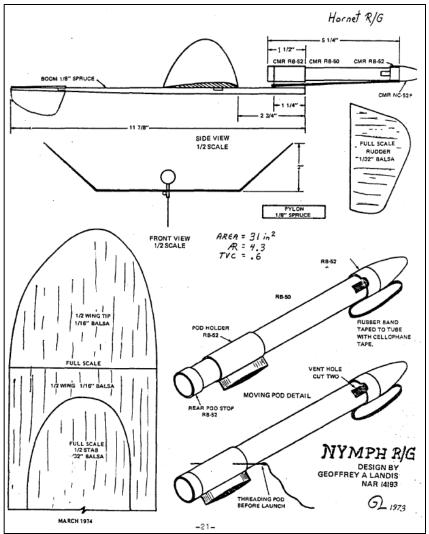
Wing Scissors Rotation



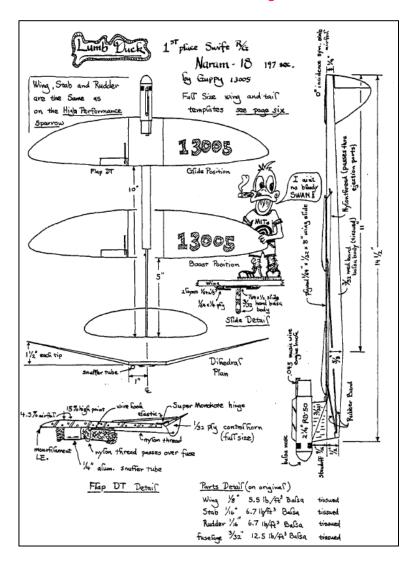
- Need a rubber band to rotate the wing
- Post can serve both the rubber band hook and the wing stop
- Euro designs often place the rubber band anchor far out on wing
 - Why?

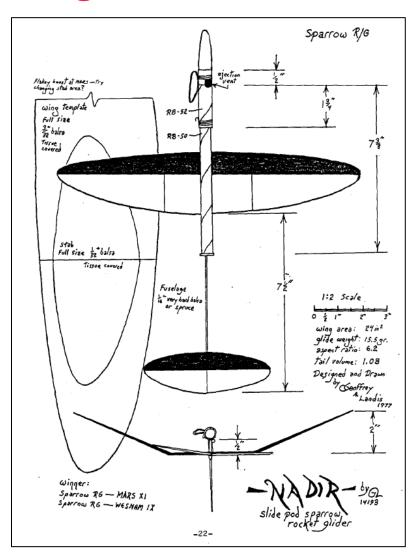
Jigs for Accurate Assembly

- Wing tube to wing at specified incidence angle
- Axle tube to fuselage (perpendicular)
- Wing-to-wing box
- Motor pylon and motor tube
- 3D-printed or manual



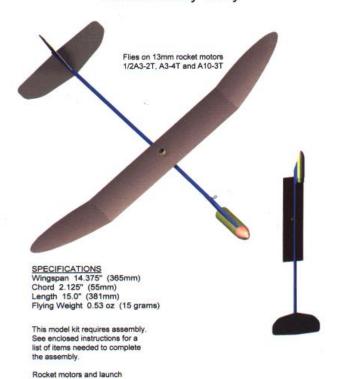
Vintage Designs


FLASHBACK

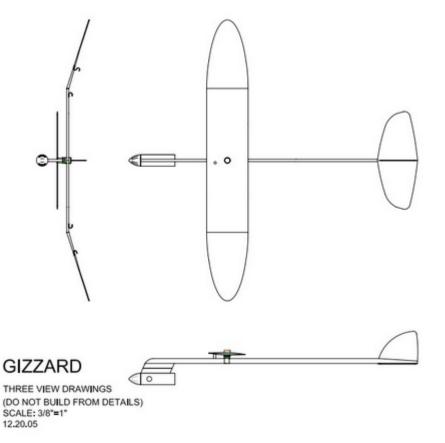

MIT Competition Design Notebook

MIT Competition Design Notebook

S4 MODELS


https://www.nar.org/fai-spacemodeling/fai-events-for-wsmc/s4-boost-glider/

Venus "Gizzard" R/G (OOP)



GIZZARD

Scissor-Flop Winged Rocket Glider
Almost Ready to Fly

equipment not included.

Apogee "Cirrus Breeze" Kit

CIRRUS BREEZE ROCKET GLIDER

✓ Length: 13.000" (33.02 cm)

Fin Span: 11.880" (30.18 cm)

✔ Fin Count: 3

Recovery System: Glider

Launch Pad Type: Low Power

Additional Info:

- Unique curved fuselage for no-hassle trimming
- ◀ Laser-cut balsa wood construction
- Assembly jigs included for extra precision.
- Made in USA!

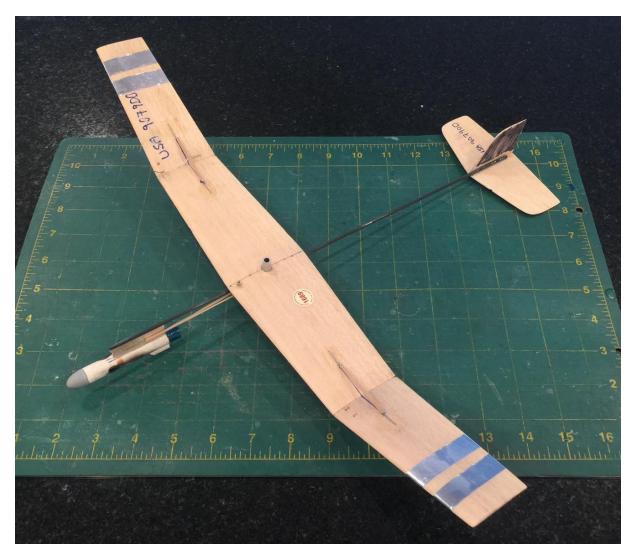
4

\$24.53

Product is If insufficient or out of stock, c

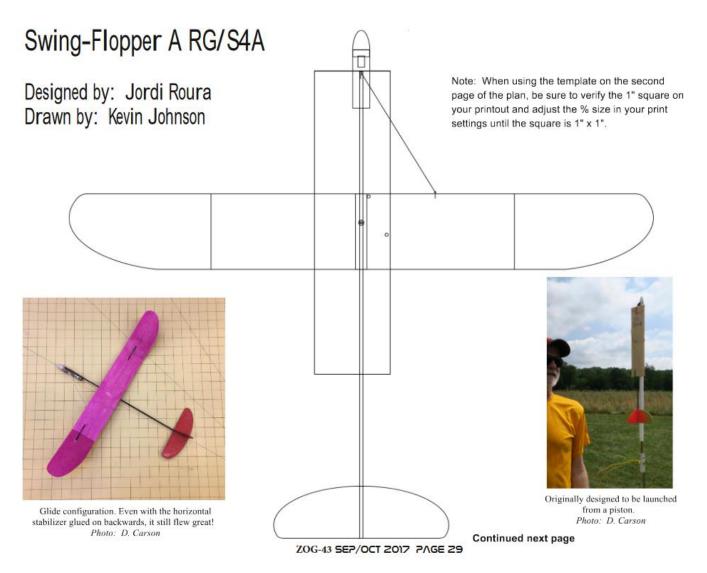
Slide Wing by Chris Flanigan

6th place at 2019 ESMC



Glide configuration

S4A Design by Chris Flanigan


Russian S4A Design

Модели планеров с ускорителем — категория S4

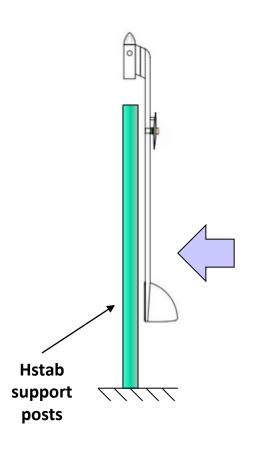
20 21 22 23 26 I цвеличено

47

Spanish S4A Design

S4A Models from Poland

Russia (Rocket Craft Master)


Observations from Local and Intl Contests

- Scissors/flop is <u>very</u> dominant design for S4
 - Occasionally, a unique design or two (slide wing, adjustable flaps)
- Among scissors/flop designs, much similarity with a few variations
 - Sizing
 - Wing aspect ratio
- Some use of composite materials
 - Russian commercial models (Rocket Craft Master)
 - Vacuum bag composite/foam wings (Vinyard, Kuzek, UK)
- Some use of 3D printing
 - Wing slide boxes, thread guides, dihedral stops
 - Assembly jigs

ANCILLARY ISSUES

Additional Issues for S4

- Launching in windy conditions
 - Launch rod 3/16" for rigidity
 - Piston, or piston with rail
 - Need to support tail in windy conditions
- Dethermalizers
 - Fuse, silly putty, electronic, RC, trackers
 - Problems: mass, reliability, "TRL"
- Boost altitude
 - Pistons can help increase altitude
 - Pistons can help shred a model (uh-oh)
 - Slide wing models can boost higher than scissors/flop
- Reliability use a checklist!

Additional Issues for S4

- Improved performance
 - Glide performance is related to mass and C_L^{1.5}/C_D
 - Lighter is better (up to a point)
 - Better airfoils for low Rn (difficult)
 - Don't forget about the C_D part!
 - Higher AR wing, aerodynamically "clean" (torque bars)
- Thermals reading "air"
 - Technology, practice
- Fly a lot
 - "Americans build, Europeans fly"
 - Better designs & materials can help but not if they don't work
 - OTOH, you probably won't win flying a "brick"
 - 100% reliability

Words of Wisdom

```
Be a good sportsman, though; it does pay. Love thy fellow competitor .... most of them are pretty good guys. Model rocketry is fun!
```

Geoffrey A. Landis
Editor

Q&A